skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lousto, Carlos O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.We report here on new results of the systematic monitoring of southern glitching pulsars at the Argentine Institute of Radioastronomy. In particular, we study in this work the new major glitch in the Vela pulsar (PSR J0835−4510) that occurred on 2024 April 29. Aims.We aim to thoroughly characterise the rotational behaviour of the Vela pulsar around its last major glitch and investigate the statistical properties of its individual pulses around the glitch. Methods.We characterise the rotational behaviour of the pulsar around the glitch through the pulsar timing technique. We measured the glitch parameters by fitting timing residuals to the data collected during the days surrounding the event. In addition, we study Vela individual pulses during the days of observation just before and after the glitch. We selected nine days of observations around the major glitch on 2024 April 29 and studied their statistical properties with the Self-Organizing Maps (SOM) technique. We used Variational AutoEncoder (VAE) reconstruction of the individual pulses to separate them clearly from the noise. Results.We obtain a precise timing solution for the glitch. We find two recovery terms of ∼3 days and ∼17 days. We find a correlation of high amplitude with narrower pulses while not finding notable qualitative systematic changes before and after the glitch. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. We performed a series of 1381 full numerical simulations of high energy collision of two black holes to search for the maximum recoil velocity after their merger. We studied equal mass binaries with opposite spins pointing along the orbital plane to maximize asymmetric gravitational radiation and performed a search of spin orientations in the plane, impact parameters, and initial linear momenta to find a maximum recoil velocity extrapolated to the extreme spinning case of [Formula: see text][Formula: see text]km/s, thus tightly bounding recoil by [Formula: see text] the speed of light. 
    more » « less
  3. We study the evolution of close triple black hole system with full numerical relativity techniques. We consider an equal mass non spinning hierarchical system with an inner binary ten orbits away from merger and study the effects of the third outer black hole on the binary’s merger time and its eccentricity evolution. We find a generic time delay and an increase in the number of orbits to merger of the binary, that can be modeled versus the distance D to the third black hole as ∼1=D^2.5 . On the other hand, we find that the orientation of the third black hole orbit has little effect on the binary’s merger time when considering a fiducial initial distance of D = 30M to the binary (with initial orbital separation d = 8M). In those scenarios the evolution of the inner binary eccentricity presents a steady decay, roughly as expected, but in addition shows a modulation with the time 
    more » « less
  4. Abstract We explicitly demonstrate that current numerical relativity techniques are able to accurately evolve black hole binaries with mass ratios of the order of 1000:1. This proof of principle is relevant for future third generation gravitational wave detectors and space mission LISA, as by purely numerical methods we would be able to accurately compute gravitational waves from the last stages of black hole mergers, as directly predicted by general relativity. We perform a sequence of simulations in the intermediate to small mass ratio regime, m 1 p / m 2 p = 1 / 7 , 1 / 16 , 1 / 32 , 1 / 64 , 1 / 128 , 1 / 256 , 1 / 512 , 1 / 1024 , with the small hole starting from rest at a proper distance D ≈ 13 M . We compare these headon full numerical evolutions with the corresponding semianalytic point particle perturbative results finding an impressive agreement for the total gravitational radiated energy and linear momentum as well as for the waveform spectra. We display numerical convergence of the results and identify the minimal numerical resolutions required to accurately solve for these very low amplitude gravitational waves. This work represents a first step towards the considerable challenge of applying numerical-relativity waveforms to interpreting gravitational-wave observations by LISA and next-generation ground-based gravitational-wave detectors. 
    more » « less
  5. ABSTRACT We report here on the first results of a systematic monitoring of southern glitching pulsars at the Argentine Institute of Radioastronomy that started in the year 2019. We detected a major glitch in the Vela pulsar (PSR J0835 − 4510) and two small glitches in PSR J1048 − 5832. For each glitch, we present the measurement of glitch parameters by fitting timing residuals. We then make an individual pulse study of Vela in observations before and after the glitch. We selected 6 days of observations around the major glitch on 2021 July 22 and study their statistical properties with machine learning techniques. We use variational autoencoder (VAE) reconstruction of the pulses to separate them clearly from the noise. We perform a study with self-organizing map (SOM) clustering techniques to search for unusual behaviour of the clusters during the days around the glitch not finding notable qualitative changes. We have also detected and confirmed recent glitches in PSR J0742 − 2822 and PSR J1740 − 3015. 
    more » « less